
Enhanced rank-based model for selecting controllers
in dynamic and heterogeneous fog environments

Marcus Vinı́cius Souza Costa∗†, Vitor Barbosa Souza†, Xavi Masip-Bruin‡
∗Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais (IF SUDESTE MG), Muriaé-MG, Brazil

†Informatics Department (DPI), Universidade Federal de Viçosa (UFV), Viçosa-MG, Brazil
‡ Advanced Network Architectures Lab (CRAAX), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Email: marcus.costa@ifsudestemg.edu.br, vitor.souza@ufv.br, xmasip@ac.upc.edu

Abstract—Fog computing is a recent paradigm leveraging
available resources at the edge of the network intended to
extend the traditional cloud model towards the novel cloud
continuum computing model. Recognized the unstoppable growth
of highly dynamic and heterogeneous edge devices, as well as
the pop up of a large set of diverse and ever more demanding
services, the selection of those edge resources best meeting service
requirements while also matching the expected QoS guarantees
is, with no doubt, a challenging task. This paper presents a rank-
based model aimed at both evaluating edge nodes’ characteristics
and selecting nodes best performing the controller role, whilst
simultaneously satisfying the required QoS constraints, coining
the so-called Control-as-a-Service concept. To that end, a yet
simple prediction strategy, based on Dynamic Branch Prediction
is introduced to avoid unnecessary controller exchanges and
QoS degradation. In the performed experiments, the proposed
method yielded a reduction in the number of exchanges when
compared to a solution with no prediction, under different
scenarios. Comparing distinct selection strategies, the proposed
model presented an improvement in controller availability as
well as in relevant controllers’ characteristics, such as battery
and memory capacity.

Index Terms—Fog computing, Dynamic controller selection,
Control-as-a-Service

I. INTRODUCTION

The enormous growth in the number of connected devices
observed in the recent years has created several opportunities
for innovative services, accommodating people, industry and
academia needs and demands. Aligned to this evolution, the
Internet of Things (IoT) plays a key role in this scenario
by putting together the set of concepts, strategies, services,
technologies, and solutions linked to the deployment of a huge
variety of devices at the edge of the network. Consequently,
a massive volume of data is produced, resulting in large data
traffic that is often processed and stored in large data-centers
(DCs) located at cloud. However, due to the latency imposed
by reaching out to cloud premises, some applications requiring
low service response time, such as real-time applications, may
experience undesired issues when relying exclusively on cloud
computing resources.

To address this issue, approaches aimed at making the most
out of the potential of edge devices are gaining momentum,
leveraging the utilization of resources available at the edge to
increase scalability while reducing the data load forwarded to
cloud [1]. Fog computing is designed as an edge computing
paradigm intended to extend cloud towards the edge of the

network, thus decreasing communication latency, supporting
mobility, systems heterogeneity and improving scalability [2].
Fog computing applications may fit diverse scenarios, partic-
ularly those with strict demands on real-time data processing,
such as dependable services in e-health, or other applications
in a diverse set of scenarios, including smart cities, smart
vehicles, sensor and actuator networks, and SmartGrids [3].

A key challenge in Fog computing refers to QoS pro-
visioning and is mainly related to the burden imposed on
controllers—entities responsible for mapping distinct service
requests into the most suitable available resources—in cen-
tralized fog control planes [4]. In order to mitigate this
problem, authors in [5] introduced a distributed control model,
referred to as Control-as-a-Service (CaaS), intended to shift the
control decisions to some edge devices serving as controllers.
This concept further empowers the network reliability in
disaster areas or in other scenarios where static controllers
may become unavailable. Considering this distributed control
model, edge resources may be (on-demand) assigned to play
the controller role, thus, being responsible for both gathering
underlying edge resources information and mapping received
service requests into those resources best matching the service
requirements. In a recent work [6], authors presented a rank-
based strategy to select the best resources to play the controller
role. Albeit the authors show satisfactory results, the frequency
observed on controller exchanges (i.e., changes in the con-
troller nodes allocation) may still be relatively high. This is
motivated by the dynamic behavior, inherent to the assessed
scenario, what undoubtedly turns into a large variation on the
computed rank values (RV). Since a controller exchange takes
place each time a candidate node’s RV is higher than the
current controller’s RV, a continuous and non-controlled RV
variation may result on two or more devices interchanging
controller roles repeatedly in a short-term basis, driving an
undesired QoS degradation and network overhead.

Assuming this behavior not to be optimal, this paper pro-
poses an RV forecast strategy, based on predicting the RV
variation in order to prevent unnecessary controller exchanges.
Therefore, the objective of this work is to propose an approach
to select potential controllers for CaaS provisioning, through
an accurate RV variation prediction mechanism, considering
devices and environments particularities whilst minimizing
overhead and QoS degradation. Our main contributions are:

• Proposing a strategy for dynamic allocation of controllers
into edge devices in highly volatile and heterogeneous
environments.

• Minimizing the frequency of controller exchanges in
order to enable efficient CaaS provisioning whilst meeting
QoS requirements in real-time applications.

Section II reviews resource selection proposals in distinct
scenarios. Section III presents an enhanced rank-based ap-
proach for selecting controllers in dynamic and heterogeneous
environments, such as Fog. In Section IV, the proposed
approach is evaluated. Finally, Section V concludes the paper
and gives some directions for possible future work.

II. RELATED WORK

The selection of resources to play as centralized controllers
in distributed scenarios is a challenging topic in current re-
search. Existing approaches seek to solve different objectives,
like energy efficiency, computational resource consumption,
reduce latency, and/or network mapping, just to name a few.
Some of these works are revisited next.

Arkian et al. [7] present a cluster-based approach for
resource selection in a vehicular cloud architecture. The pre-
sented strategy selects vehicles to perform the role of clus-
terheads (CH) using fuzzy logic and reinforcement learning.
However, authors do not consider the processing and memory
capacity of each candidate node during selection. In [8],
authors dynamically select stable CHs in VANETs, but, since
their work focuses on routing, the selection is performed
according to vehicles’ positioning, and the heterogeneity of
devices is not considered.

Albeit the final purpose of the work presented in [9] is
resource discovery in Mobile Cloud Computing (MCC), an
appealing clustering-based mechanism is also proposed for
CH selection. Similar to the work proposed in this paper,
the CH is used as a resource manager for discovering and
selecting resources for services execution. However, authors
do not consider anticipating controllers exchange to cope with
predictable failures.

In [10], authors propose an online secretary framework for
dynamic fog network formation in which a given fog node
selects the most suitable set of neighboring fog nodes for
service offloading. However, no policy for selecting the first
node is presented. Kim et al. [11] formulate a dynamic market
game that performs an economic analysis among the Internet
Service Provider (ISP), end service-users, and edge resource
owners in a fog environment. In the proposed approach, the
ISP is a sort of static controller that mediates service requests
through the dynamical employment of edge resources.

III. ENHANCED MODEL FOR CONTROLLER SELECTION

This section presents an enhanced rank-based model aiming
at selecting a set of suitable controllers to provide CaaS in
dynamic and heterogeneous environments, such as the one
built upon Fog computing.

The next subsection briefly discusses controllers particular-
ities in the envisioned distributed scenario. Subsequently, a

strategy for computing candidates’ RVs is presented, as well
as the criteria deployed to select the first controller. The section
ends discussing when controller exchanges should occur.

A. Highlighting controller’s particularities
Since the controller is responsible for selecting resources

for service execution, rather than executing the service itself, it
must gather information regarding resources on the underlying
nodes. In addition, the controller election should not consider
resources related to specific service execution, such as sensors
and actuators. Taking this into consideration, it must be clear
that any controller selection mechanism must evaluate service-
agnostic characteristics of interest (CI) of each candidate node.
In this work, we consider the following CIs, all related to QoS
provisioning in terms of controller availability or latency:

• mobility: nodes with high mobility are more likely to mi-
grate to distinct fog domains and relinquish the controller
role;

• processing and memory capacity: the utilization of power-
ful devices for low latency control decisions is a trade-off
for allocating them for low delay service execution;

• battery power: low battery may result in controller un-
availability due to discharging;

• signal strength: low signal strength can increase connec-
tion disruption probability as well as packet loss, thus
compromising the QoS.

This paper proposes a weight-based metric that makes use of
distinct nodes’ CIs and computes their RVs in order to discover
potential controllers. In real-world deployments, devices may
present high heterogeneity in terms of processing, available
memory and mobility, among others. It is with no doubt that
these idiosyncrasies must be analyzed when selecting the most
suitable resources to play the controller role.

B. RV calculation
Each node j is specified by a set of CIs, denoted by

Cj = {c1j , c2j , ..., cnj} respectively related to a set of
weights W = {w1, w2, ..., wn}, where n is the number
of considered CIs, 0 ≤ cij ≤ 100 and 0 ≤ wi ≤ 1, where
1 ≤ i ≤ n. Therefore, the RV for a node j is calculated as:

RVj =

n∑
i=1

cij × wi (1)

As previously mentioned, the CIs considered in this work
for RV calculation are mobility, processing power, available
memory, battery, and signal strength. The following lines
introduce the proposed strategy to compute the value for each
CI. It is worth mentioning that a candidate node gives up the
election process if any of its CIs is equal to 0 (zero).

• Mobility: The mobility of node j (Dj) contributes so that
nodes with a low probability of displacement have higher
score values in this metric. Therefore, Dj is given by

Dj = 100− Fdj (2)
where Fdj is a displacement factor of j obtained through
positioning techniques, such as triangulation or GPS,
within an interval ∆t = t2 − t1. Thus, Fdj is given by

Fdj = min{100, 100

dmax

√
(xt2 − xt1)2 + (yt2 − yt1)2} (3)

where (xt1,yt1) and (xt2,yt2) are the location coordinates
of j at the instant t1 and t2, respectively, while dmax is
a predefined constraint used to normalize the distance
traveled by a node regarding the maximum expected
displacement of a controller node within an interval ∆t.

• Battery: The battery metric (B) indicates the remaining
battery in a node, given by the percentage of battery (b).
A node must have b greater than a predefined threshold
bmin to be able to be a controller candidate. To avoid the
unavailability of controllers, if a controller has b less than
bmin, a new selection of controllers must be triggered.
Therefore, Bj is given by

Bj =

{
100× bj , if bj ≥ bmin

0 , otherwise (4)

• Signal: To assess signal strength (S) of node j, the signal-
to-noise ratio (SNR) is normalized according to smax, a
predefined base value. Therefore, Sj is given by

Sj = min{100,
100

smax
× SNRj} (5)

• Memory: A controller candidate must have enough avail-
able memory (M) to store information about the under-
lying edge resources. This model classifies the available
memory of every node into η possible levels (η ≥ 2).
Thus, Mj is given by

Mj =

{
100× δlog2(η−1)−log2mj , if mj > 0

0 , otherwise
(6)

where mj (0 ≤ mj < η) is the memory level of j, and δ
(0 < δ < 1) is a constant used to represent the variation
of M according to the memory level. For instance, for
δ = 0.5, the variation of M is linear since M = 100 ×
2−1(log2(η−1)−log2mj) = 100×mj/(η − 1). Setting δ >
0.5 is useful if we intend to achieve higher variations of
M as the memory of a node shifts between lower levels,
and lower variations when shifting between higher levels.
The opposite behavior can be achieved with δ < 0.5.

• Processing: The processing capacity metric (P) is classi-
fied through hardware MIPS into ρ distinct levels (ρ ≥ 2),
according to processing capacity parameters. The maxi-
mum value (P = 100) is assigned to a node j if its level
pj equals ω (0 < ω < ρ), whilst lower P values are
assigned to nodes with higher or lower pj . Thus, Pj is
given by

Pj =


100× φlog2ω−log2pj , if 0 < pj ≤ ω

100× Φlog2(ρ−ω+1)−log2(ρ−pj+1) , if pj > ω
0 , if pj = 0

(7)

where φ (0 < φ < 1) and Φ (0 < Φ < 1) are constants
used to define the distribution of Pj according to pj .
In other words, they define a decreasing factor of P
according to the distance between pj and ω.

Notice that, in this approach, nodes with processing level
pj = ω are considered to have enough capacity for the

proper execution of controller duties with no QoS loss due to
processing overhead. Hence, the employment of nodes with
maximum processing capacity as controllers is not required.
The rationale behind this approach is to employ resources
that comply with the minimum processing requirements for
controllers whilst preserving the most powerful resources for
the execution of end-user services.

It is worth highlighting that, due to a protocol design
decision, the messages exchanged during controller election
use 3 bits to represent the memory and processing levels.
Therefore, the maximum value of both η and ρ is 8, which we
consider enough to classify and differentiate resources in terms
of processing and memory capacity in the studied scenario. In
our experiments, we set η = 6, ρ = 8, and ω = 3. The use
of ρ > η reflects need for enough processing classification
levels both higher and lower then ω. However, notice that
the parameters for memory and processing metrics may be
tuned according to the deployed services demands. Finally,
the complete equation for the RV of each candidate node j is
given by

RVj = (Djw1) + (Bjw2) + (Sjw3) + (Mjw4) + (Pjw5) (8)

C. Controller selection process

This subsection details the steps for selecting and eventually
exchanging controllers for dynamic CaaS provisioning. The
selection of the first node to play as controller follows a
decentralized path as described next. The process starts by all
candidate nodes calculating their RV values independently, and
pruning all candidate nodes with one or more CI values equal
to 0. Moreover, in order to avoid increasing the selection delay,
the mobility is not considered in the first controller election,
since its calculation takes ∆t seconds. Hence, the mobility
weight is set to 0 (zero).

Then, each remaining node broadcasts its calculated RV and
waits for the reception of other candidates’ RV. Since this
approach deals with dynamic scenarios with varying amount
of nodes, after broadcasting its RV, each candidate must set
up a timeout interval. When the candidate node receives a
message containing an RV, it compares the received RV with
its own RV. If its own RV is greater than or equal to the
received one, it restarts its timeout timer and keeps waiting
for messages from other candidates. In case its RV is lower
than the received one, it gives up on being a controller by
canceling the scheduled timeout event.

After messages exchange, all but the candidate with the
greatest RV give up, canceling their timeout event. Finally,
when the timeout event is triggered in the remaining candidate,
it becomes the controller and broadcasts its status. The node
with greatest RV resets its timeout timer at most N-1 times
before becoming a controller, where N is the number of candi-
dates. If an unlikely tie occurs among two or more candidates,
a random number is used as a tiebreaker. Thus, after timeout,
involved candidates exchange messages containing a 2 bytes
random number and the one with the highest number declares
itself as controller. If two or more nodes announce themselves

as controllers at the end of the selection process, the same
tiebreaking process is employed.

Once the elected controller broadcasts its status, the in-
vestigation phase starts. Each non-controller node sends a
unicast reply message to the controller informing about its
characteristics, including the CIs used for the controller se-
lection. Thus, the controller builds an internal database so it
can map received requests into the most suitable resources
according to the service requirements. It is worth mentioning
that extra characteristics may be included apart from the
characteristics used for controller selection, but, since they
are service-specific, they are out of the scope of this work. In
addition, non-controller nodes send their CI at fixed intervals,
hereinafter called rounds, enabling the controller to keep an
up-to-date database, including mobility data that shall be
employed when exchanging controllers.

At the end of each round, the controller calculates the RV
of each node, including its own. Since nodes’ CIs can change
rapidly over time, the RV of each node may vary widely,
which might lead to several controller exchanges. Unfortu-
nately, frequent controller exchanges would certainly result in
QoS degradation due to frequent messages exchange for the
selection itself, followed by the need for building underlying
resources database. Consequently, it is a must to design a
strategy to reduce such undesired controller exchanges, while,
at the same time, guaranteeing that a candidate more suitable
to provide long-term CaaS may assume the controller role,
thus, minimizing controller unavailability due to predictable
failures, such as disruptions resulting from low SNR or lack
of battery, further reducing the negative impact on QoS.

Predictive mechanisms can help identify nodes that are
rapidly changing RVs, thus preventing them from becoming
controllers. Machine learning techniques may be effective for
this purpose, but as nodes may have limited memory and
processing capacity, other alternatives may be applied to solve
this problem. In addition, using complex mechanisms for pre-
dicting RV variation of hundreds of candidates simultaneously
would certainly introduce a burden that controllers cannot cope
with. For this reason, this work proposes to adapt a simple
prediction strategy widely used in microprocessors, so-called
Dynamic Branch Prediction. In the proposed approach, the
controller keeps a Rank Variation History Table (RVHT) with
a 2-bit counter for each node, representing 4 distinct levels.
Therefore, once the controller receives the CIs of one node
and computes its respective RV, it compares the previous RV
with the newly calculated one, so it can determine the RVHT
level of the node. Each RV increase yields an advance one
step closer to the forth level, whilst, each RV decrease results
in one step closer to the first level, as illustrated by Fig. 1.

As the controller calculates each node’s RV and updates
its internal database, it checks if any RV is greater than
its own. Additionally, it checks if the node level in RVHT
is equal to level four. Otherwise, it might indicate that if
any of these nodes become a controller, it is more likely
to be replaced quickly. Therefore, if both comparisons (RV
and RVHT level) are satisfied, an exchange may occur. In

00 01 10 11
RV increase

RV decrease

RV increase

RV decrease

RV increase

RV decrease

Fig. 1. RVHT with 2-bit saturating counter for predicting RV variation.

such case, the current controller notifies the node with the
greatest RV amongst the ones satisfying both conditions.
After receiving the notification, the new controller broadcasts
its controller status and the investigation phase restarts. The
controller exchange process is described in Algorithm 1. If
two or more candidates present the same RV—and considering
that they have RVHT level 4—the current controller randomly
chooses one among them.

Algorithm 1 Controller Exchange
1: c: controller node
2: N: set of all nodes
3: t: predetermined round time
4: h: arbitrary node
5: procedure CONTROLLEREXCHANGE()
6: while True do
7: c collects nodes′ CI for t seconds
8: c calculates all nodes′ RV including its own
9: h← node with highest RV in c′s database

10: if (h′s RV > c′s RV and h′s RV HT level = 4) or
(c′s battery level < bmin) then

11: c informs h that it is the new controller
12: break
13: h broadcasts its status to N
14: end

IV. PERFORMANCE ANALYSIS AND COMPARATIVE STUDY

In order to evaluate the proposed selection strategy, several
experiments are carried out to verify the prediction efficiency
in reducing unnecessary controller exchanges. Furthermore,
the proposed method is also compared with a tailored version
of a distinct election strategy found in the literature. In the
following subsection, the adapted version used for comparison
is described. Later, the performed experiments and the attained
results are presented.

A. Comparative election strategy

The election strategy tailored for comparison purposes is
fully described in [9], where authors present a cluster forma-
tion and CH selection strategy for MCC. That work is properly
enriched and adapted in this paper to fulfill the requirements
imposed by the scenario to be assessed in this work, shifting
from ad-hoc to infrastructure mode. For instance, rather than
computing the relative mobility through the signal strength
variation of each node according to all other nodes, as
proposed in the original work, in the infrastructure mode,
each node computes the signal strength variation regarding
the access point (AP) it is connected to through the received
beacon messages. Besides node mobility (Mob), the battery
power (Bpower) is also used to calculate its cluster function
(Clusfunc). Hence, Clusfunc is given by

Clusfunc = w ×Mob+ (1− w)/Bpower (9)

where w is a weight factor, subject to 0 ≤ w ≤ 1. In addition,
each node broadcasts its Clusfunc value and the one with

lower value is selected as CH. However, the Clusfunc is not
periodically updated by nodes.

Since the usual interval between conventional APs beacon
messages is relatively short, the interval between beacons
considered for computing signal variation is, at minimum, Ts.
Therefore, after listening to the first beacon message, one node
must wait at least Ts to consider a new beacon message and
compute the signal variation.

It is worth noting that, in this work, we consider one fog
domain represented as one single cluster with one CH at
a time. Moreover, the comparative strategy, mimicking the
original work [9], does not consider the need for reelection
when nodes’ parameters change over time. Rather than that, a
new CH takes place only after a node failure or if a node with
a better Clusfunc value gets into the cluster. On the one hand,
this approach reduces the number of controller exchanges. On
the other hand, QoS degradation may be expected since, before
a failure, a controller may present low throughput and memory
overload for several seconds. As a consequence, the controller
may relinquish service requests.

B. Scenario description

In the conducted simulations, we deployed fog environments
built upon heterogeneous nodes, where the proposed approach
is used to dynamically select controllers among available
devices as well as the adapted version of CH selection in MCC.
The simulations were performed in the OMNeT++ simulator.

The hardware features in edge devices include processing
capacity simulation ranging from 1500 to 35000 MIPS and
available memory ranging from 150 MB to 3 GB. Features
such as SNR, mobility, available memory, and battery avail-
ability vary throughout the simulation time. The memory
variation is simulated by means of a Probability Density
Function (PDF) in inverse gamma distribution with shape
parameter α = 0.5 and scale parameter β = 10. A random
mobility is implemented through the OMNet++ MassMobility
module, while signal power is computed by the OMNet++
simulator. To model the battery consumption, a linear variation
is employed. Table I shows the parameter values used for
all experiments. It is worth mentioning that smax is defined
as 20dB since it is considered a moderate channel quality
[12] and a good value for data networks [13]. Since nodes
present heterogeneous batteries in terms of both capacity
and consumption pattern, bmin is set to 10% as a safety
margin to prevent controller discharges. Table II, whose values
are inferred from [6], shows nodes’ memory and processing
capacity classification. Notice that some parameters may be
tailored according to the specificities of deployed services and
scenarios. For instance, processing and memory levels may
be tuned in scenarios where the majority of nodes present
low processing and memory capacity; services requiring a
high updating rate, i.e., short round times, may benefit from
a higher value for ∆t. The definition of a strategy to set the
most suitable values for such parameters is out of the scope of
this work. The values for weights w1 to w5 are inferred from
the adaptive strategy proposed by [14].

TABLE I
EXPERIMENT PARAMETERS

Parameters Values
Number of nodes 10, 40, 70, 100
Experiments time 3600 rounds
Model thresholds bmin = 10%, dmax = 100m,

smax = 20db
Memory and processing constants δ = 0.5, φ = 0.6,Φ = 0.7
Time parameters ∆t = Ts = 5 rounds
Proposed model weights (w1...w5) 0.2, 0.25, 0.1, 0.25, 0.2
Comparative model parameter w = 0.5

TABLE II
MEMORY AND PROCESSING CAPACITY CLASSIFICATION LEVELS

Memory Processing
Level Memory (MB) Level MIPS

0 less than 128 0 less than 4375
1 from 128 to 255 1 from 4375 to 8750
2 from 256 to 511 2 from 8751 to 13125
3 from 512 to 767 3 from 13126 to 17500
4 from 768 to 1024 4 from 17501 to 21875
5 more than 1024 5 from 21876 to 26250

6 from 26251 to 30625
7 more than 30625

C. Results

In order to assess the proposed approach, three distinct as-
pects are analyzed: number of controller exchanges, controller
availability, and characteristics of the used controllers.

The first experiment evaluates the amount of controller
exchanges within the simulation time. For the sake of com-
parison, the proposed method is shown both with and without
RVHT prediction. As shown in Fig. 2, the prediction strategy
shows a reduction in the number of exchanges for all deployed
scenarios. Moreover, when considering all simulations, the
average number of controller exchanges is 12.2 when the
proposed prediction strategy is employed and 47.9 with no
prediction strategy. Hence, the overall reduction is 74.5%.
Notice that the adapted version of the CH selection in MCC
is not shown in this figure since it focuses on the selection of
a CH when none is available, for instance, due to connection
or node failure, rather than exchanging CHs.

10 40 70 100
 Number of nodes

A
m

o
u
n
t

o
f

co
n
tr

o
lle

r
e
xc

h
a
n
g
e
s 150

125

100

 75

 50

 25

 0

No prediction
RVHT prediction

Average number
for the respective
configuration

Fig. 2. Number of controller exchanges: boxplot and average.

Fig. 3 illustrates the controller exchanging behavior for
both approaches by showing the RV variation of nodes 44,
55, 71 and 89 in an execution slice between rounds 539
and 571, when those nodes are the only ones who assumed
the controller role. The two thicker lines highlight the nodes
assuming the controller role in each round. Using the proposed
prediction mechanism, one single exchange—from node 55 to

89—occurs in round 563. On the other hand, when prediction
is not employed, 10 exchanges occur in rounds 541, 542, 550,
551, 555, 556, 561, 566, 567 and 569. When considering
the complete execution of this experiment, the chance for
exchanging controllers after each round without prediction was
11% and approximately 5% when prediction was employed.

50

60

70

80
controller
with
prediction

controller
without
prediction

node 44

node 55

node 71

node 89
53

9
54

1
54

3
54

5
54

7
54

9
55

1
55

3
55

5
55

7
55

9
56

1
56

3
56

5
56

7
56

9
57

1

Fig. 3. Nodes’ RV variation over time in the proposed strategy.

When selecting resources to play the controller role, a crit-
ical requirement is that on-demand selected controllers do not
adversely affect service performance. The second experiment
compares currently used controllers’ characteristics by measur-
ing them in each round. Fig. 4 uses boxplots to show available
battery and memory on controllers. Notice that the proposed
method has selected controllers with higher battery availability
over time, enabling long-term CaaS provisioning. It also shows
greater effectiveness than the comparative method for selecting
controllers that have more available memory. This means that
the controllers selected in the proposed approach are more
suitable to cope with large edge resource databases.

Finally, the mechanism used by our proposal to keep
up-to-date nodes information enables controllers exchanging
before the occurrence of predictable failures, such as lack
of battery or connection disruption due to node mobility. In
the performed experiments, our proposal achieved a controller
availability of 100%, considering only predictable failures,
versus 98.54% achieved by the comparative method, where
controllers unavailability were observed in 52.6 simulation
rounds, in average, out of the total 3600 rounds.

(a) (b)
Fig. 4. (a) Battery and (b) Memory availability on controllers.

V. CONCLUSION

In this paper, we present an enhanced rank-based strat-
egy with RV variation prediction for on-demand selection
of controllers. The performed experiments highlight that the
proposed approach shows a significant reduction of controllers
exchanges. Albeit an adapted approach for CH selection,
used as a comparative method, may present fewer controller
exchanges, it comes up to present drawbacks such as a higher
controller unavailability rate and a notable QoS degradation
due to the employment of less suitable resources as controllers.

Moreover, the reduced amount of exchanges obtained by the
prediction strategy, in comparison to the former strategy with
no prediction, does not affect controller availability. As future
work, we aim at improving overall resilience by coping with
unpredictable controllers failures, and tailoring the model for
its deployment in scenarios where ad-hoc communication is
demanded. In such cases, it is mandatory to diminish the over-
head on the dissemination of nodes’ CIs through lightweight
protocols, such as gossip.

ACKNOWLEDGMENT

This work is supported by FAPEMIG, CNPq, and CAPES.
For the UPC author this work has been supported by the
Spanish Ministry of Science, Innovation and Universities and
by the European Regional Development Fund (FEDER) under
contract RTI2018-094532-B-I00.

REFERENCES
[1] M. Satyanarayanan, “The emergence of edge computing,” Computer,

vol. 50, pp. 30–39, Jan 2017.
[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the internet of things,” in Proceedings of the First Edition of the
MCC Workshop on Mobile Cloud Computing, MCC ’12, (New York,
NY, USA), pp. 13–16, ACM, 2012.

[3] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application manage-
ment in fog computing environments: A taxonomy, review and future
directions,” ACM Comput. Surv., vol. 53, July 2020.

[4] Y. Jiang, Z. Huang, and D. H. K. Tsang, “Challenges and solutions in
fog computing orchestration,” IEEE Network, vol. 32, pp. 122–129, May
2018.

[5] V. B. Souza, A. Gómez, X. Masip-Bruin, E. Marı́n-Tordera, and J. Gar-
cia, “Towards a fog-to-cloud control topology for QoS-aware end-to-end
communication,” in 2017 IEEE/ACM 25th International Symposium on
Quality of Service (IWQoS), pp. 1–5, June 2017.

[6] M. V. S. Costa, V. B. Souza, and S. S. A. Júnior, “Dynamic control-
as-a-service provisioning in fog computing,” in 2019 International
Conference on Software, Telecommunications and Computer Networks
(SoftCOM), pp. 1–6, Sep. 2019.

[7] H. R. Arkian, R. E. Atani, A. Diyanat, and A. Pourkhalili, “A cluster-
based vehicular cloud architecture with learning-based resource manage-
ment,” The Journal of Supercomputing, vol. 71, no. 4, pp. 1401–1426,
2015.

[8] M. A. Saleem, Z. Shijie, M. U. Sarwar, T. Ahmad, A. Maqbool, C. S.
Shivachi, and M. Tariq, “Deep learning-based dynamic stable cluster
head selection in vanet,” Journal of Advanced Transportation, 2021.

[9] P. Athwani and D. P. Vidyarthi, “Resource discovery in mobile cloud
computing: A clustering based approach,” in 2015 IEEE UP Section
Conference on Electrical Computer and Electronics (UPCON), pp. 1–6,
Dec 2015.

[10] G. Lee, W. Saad, and M. Bennis, “An online secretary framework for fog
network formation with minimal latency,” in 2017 IEEE International
Conference on Communications (ICC), pp. 1–6, May 2017.

[11] D. Kim, H. Lee, H. Song, N. Choi, and Y. Yi, “On the economics of fog
computing: Inter-play among infrastructure and service providers, users,
and edge resource owners,” in 2018 IEEE International Conference on
Communications (ICC), pp. 1–6, May 2018.

[12] D. Lal, A. Manjeshwar, F. Herrmann, E. Uysal-Biyikoglu, and A. Ke-
shavarzian, “Measurement and characterization of link quality met-
rics in energy constrained wireless sensor networks,” in GLOBE-
COM ’03. IEEE Global Telecommunications Conference (IEEE Cat.
No.03CH37489), vol. 1, pp. 446–452 Vol.1, 2003.

[13] Cisco Meraki, “Signal-to-noise ratio (SNR) and wireless signal
strength.” https://documentation.meraki.com/MR/WiFi Basics and
Best Practices/Signal-to-Noise Ratio (SNR) and Wireless Signal
Strength, 2020. Accessed: 2021-09-16.

[14] M. V. S. Costa and V. B. Souza, “An adaptive rank-based approach for
dynamic controller selection in fog computing,” in Anais do XXXVIII
Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuı́dos,
(Porto Alegre, RS, Brasil), pp. 113–126, SBC, 2020.

